

AccuDiag™ SCoV-2 IgG ELISA Kit

REF 1501-P1

SCoV-2 IgG ELISA

Principle	Indirect ELISA
Detection	Qualitative
Sample	4 μL serum/plasma
Incubation Time	110 minutes
Sensitivity	100%
Specificity	100%
Shelf Life	12 Months from the manufacturing date

PRODUCT FEATURES

INTENDED USE

The Accudiag[™]SCoV-2 IgG ELISA is an in vitro diagnostic test for the qualitative detection of human IgG antibodies in serum specimens collected from individuals suspected by their health care provider of prior infection with the virus that causes COVID-19.

The Accudiag[™]SCoV-2 IgG ELISA detects IgG antibodies as indicative of an immune response to SARS-CoV-2 in patients suspected of previous SARS-CoV-2 infection, or for the detection of IgG seroconversion in patients following known recent SARS-CoV-2 infection. The test is an aid in the diagnosis of patients suspected of prior COVID-19 in conjunction with clinical presentation and the results of other laboratory tests.

Results from the Accudiag^{IM}SCoV-2 IgG ELISA test should not be used as the sole basis for diagnosis and should not be used for the diagnosis of patients with acute COVID-19 infection. Testing is limited to laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. 263a, to perform moderate and high complexity tests.

Results are for the detection of IgG SARS-CoV-2 antibodies. IgG antibodies to SARS-CoV-2 generally become detectable beginning 10 – 14 days following infection but may occur later. The presence of IgG antibodies, following previously negative testing, defines IgG antibody seroconversion following SARS-CoV-2 infection.

Negative results do not preclude acute SARS-CoV-2 infection and should not be used as the sole basis for patient management decisions. IgG antibodies may not be present for more than two weeks following infection, and patients may remain infectious during the acute infection even if IgG antibody is present. Results must be combined with clinical observations, patient history, and epidemiological information.

False positive results for IgG antibodies may occur due to cross-reactivity from preexisting antibodies against common cold viruses or other possible causes. Prevalence of SARS-CoV-2 infection in the area where testing has occurred should be considered when interpreting positive test results.

At this time, it is unknown how early specific IgG may appear or how long IgG antibodies may persist following infection.

For prescription Use Only. For in vitro diagnostic use only.

SIGNIFICANCE AND SUMMARY

The novel coronavirus, SARS-CoV-2 (the causative agent of COVID-19), has been responsible for the pandemic of pneumonia-like symptoms and associated deaths from late 2019 and into 2020. The detection of the initial outbreak in the Hubei Province of China and the subsequent need for an effective diagnosis were quickly described (Li et al., 2020; Wu et al., 2020; Zhou et al., 2020).

It has been reported that PCR-confirmed SARS-CoV-2 positive patients may seroconvert and develop antibodies against SARS-CoV-2 antigens anywhere from 6-21 days after the onset of clinical symptoms (Okba et al., 2020) The specific and reliable detection of human IgG antibodies to SARS-CoV-2 remains a key method to monitor infections, to effect contact tracing, and for serosurveillance (Okba et al., 2020).

The Accudiag[™]SCoV-2 IgG ELISA is a qualitative immunoassay for the detection of IgG antibodies targeting SCoV-2 related antigens.

ASSAY PRINCIPLE

The Accudiag[™] SCoV-2 IgG ELISA is a qualitative indirect ELISA for the detection of IgG antibodies targeting epitopes derived from SARS-CoV-2. Diluted serum specimens are added to antigen Accudiag[™]SCoV-2 IgG ELISA (IVD) coated wells and incubated. After incubation and washing, human antibodies targeting SARS-CoV-2 antigens remain bound to the plate surface. Secondary antibody conjugated to horseradish peroxidase (HRP) targeting human IgG is then added to each well. After incubation, the ELISA wells are washed once again before a tetramethylbenzidine (TMB) substrate is added. An acidic stopping solution is finally used to stop the reaction and the degree of enzymatic turnover of the substrate is determined by absorbance measurement at 450 nanometers.

Positive, Negative and Cut-Off Controls are provided to ensure the integrity of the test and to determine the assay specific threshold. Up to 90 specimens may be evaluated with each kit (as the controls are run in duplicate). The entire procedure takes approximately 1 hour and 50 minutes.

Diagnostic Automation/Cortez Diagnostics, Inc.

SPECIMEN COLLECTION & PREPARATION

- Only human serum should be used for this assay, and the usual precautions for venipuncture should be observed. Blood obtained by venipuncture should be allowed to clot at room temperature (20-25°C) for 30 to 60 minutes and then centrifuged according to the Clinical and Laboratory Standards Institute (CLSI Approved Guideline Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests; GP44).
- Testing should be performed as soon as possible after collection. Do not leave sera at room temperature for prolonged periods. Separated serum should remain at 20-25°C for no longer than 8 hours. If assays are not completed within 8 hours, serum should be refrigerated at 2-8°C. If assays are not completed within 48 hours, or the separated serum is to be stored beyond 48 hours, serum should be frozen at or below -20°C.
- Avoid repeated freezing and thawing of samples more than four times as this can cause analyte deterioration. Frost-free freezers are not suitable for sample storage.
- Frozen samples should be thawed to room temperature and mixed thoroughly by gentle swirling or inversion prior to use. Always quick spin before use.
- If sera are to be shipped, they should be packed in compliance with Federal Regulations covering transportation of infectious agents.
- Do not use sera if any indication of microbial growth is observed.

REAGENTS

Warning: Do not use any reagents where damage to the packaging has occurred.

Materials provided with the kit

- SCOV-2 ANTIGEN COATED MICROTITER STRIPS FOR IGG: Strip holder in a resealable foil pouch, containing 96 polystyrene microtiter wells coated with SCoV-2 antigen in each well. Stable at 2-8°C until the expiration date.
- SCOV-2 IGG NEGATIVE CONTROL: One vial, 50 μL. Negative serum. The Negative Control will aid in monitoring the integrity of the kit. Stable at 2-8°C until the expiration date.
- SCOV-2 IGG POSITIVE CONTROL: One vial, 50 μL. Positive Control sample. The artificial Positive Control will aid in monitoring the integrity of the kit. Stable at 2-8°C until the expiration date.
- SCOV-2 IGG CUT-OFF CONTROL: One vial, 50 μL. Cut-Off Control sample. The artificial Cut-Off Control will aid in monitoring the integrity of the kit and estimating the proper threshold to determine test sample status. Stable at 2-8°C until the expiration date.
- 5. SAMPLE DILUTION BUFFER FOR SCOV-2: Two bottles, 25 mL each, ready to use. Tris-HCl buffered solution (pH 7.2-7.6) with Tween 20 (0.05%), preservative (0.05% ProClin-300) and additives. The Sample Dilution Buffer will be used for the dilution of test samples and controls. Stable at 2-8°C until the expiration date.
- 6. **100X CONJUGATE FOR SCOV-2 IGG:** One vial, 100 μ L, and containing horseradish peroxidase-labeled antibody in a Tris-based buffer with 0.03% 0.05% ProClin-300. Stable at 2-8°C until the expiration date.
- 7. **CONJUGATE DILUENT FOR SCOV-2:** One bottle, 9 mL. This contains the diluent solution for the 100X Conjugate in a Tris-based buffer with 0.01% Thimerosal as a preservative. The 100X conjugate is diluted directly into this solution. The 100X conjugate should only be diluted into this solution immediately prior to running the assay. Unused diluted conjugate should be discarded. The conjugate diluent is stable at 2-8°C until the expiration date.

- 10X WASH BUFFER: One bottle, 120 mL. 10X concentrated phosphate buffered saline with Tween 20 (pH 6.8-7.0). Stable at 2-8°C until the expiration date.
- LIQUID TMB SUBSTRATE: One bottle, 12mL, ready to use. Contains 3, 3', 5, 5'-tetramethylbenzidine (TMB) and hydrogen peroxide in a citric acidcitrate buffer (pH 3.3-3.8). Stable at 2-8°C until the expiration date. Note: The substrate should always be stored in the light-protected bottle provided.
- 10. **STOP SOLUTION:** One bottle, 6mL, ready to use. 1N Sulfuric Acid. Used to stop the reaction. Stable at 2-8°C until the expiration date.

Warning: Strong acid. Wear protective gloves, mask and safety glasses. Dispose all materials according to all applicable safety rules and regulations.

Materials required but not provided

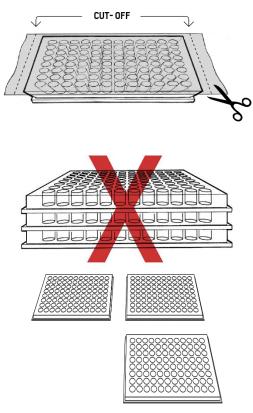
- 1. ELISA spectrophotometer capable of absorbance measurement at 450 nm .
- 2. Biological or high-grade water
- 3. Appropriately sized beakers and stir bars
- 4. Vacuum pump
- 5. Automatic plate washer
- 6. 37°C incubator without CO₂ supply
- 7. 1-10 μL single-channel pipettors, 50-200 μL single- and multichannel pipettors
- 8. Polypropylene tubes or 96 well dilution plates
- 9. Parafilm or plastic plate cover
- 10. Timer
- 11. Vortex

REAGENT PREPARATION

- **Preparation of 1X Wash Buffer** Dilute the 10X Wash Buffer to 1X using Biological or High-Grade Water. To prepare a 1X Wash Buffer solution, mix 120 mL 10X Wash Buffer with 1080 mL distilled (or deionized) water. Mix thoroughly to ensure that any precipitate is dissolved and that the solution is uniform. Once diluted to 1X, the solution can be stored at room temperature for up to 6 months. Properly label the 1X Wash Buffer solution and carefully note the expiration date on the label. Check for contamination prior to use. Discard if contamination is suspected.
- Microtiter Strip Wells Select the number of coated wells required for the assay. The remaining unused wells should be repackaged immediately with the supplied desiccant and stored at 2-8°C until ready to use or expiration.
- **Preparation of Conjugate Solution** Add 90 µL of 100X Conjugate for SCoV-2 IgG directly to the 9 mL bottle of Conjugate Diluent for SCoV-2 (1 part : 100 parts). Alternatively, use a clean pipette to remove the required volume of Conjugate Diluent and add the necessary volume of 100X Conjugate for SCoV-2 ELISA into a clean polypropylene test tube in order to maintain the 1:100 ratio. Mix by inverting the solution several times. This conjugate solution should be prepared immediately prior to running the assay and discarded immediately after use in the assay.

ASSAY PROCEDURE

CAUTION: The test procedure must be strictly followed. Any deviations from the procedure may produce erroneous results. Bring all reagents and specimens to room temperature (~25°C) before use. Thoroughly mix the reagents and samples before use by gentle inversion. NOTE: For long-term storage, serum samples should not be repeatedly thawed and frozen more than four times. Sera should be further divided into small aliquots and stored at -20°C or below.


Diagnostic Automation/Cortez Diagnostics, Inc.

This kit has not been optimized by Diagnostic Automation for use with a specific automated ELISA processing system. Use with an automated ELISA processing system will require proper validation to ensure results are equivalent to the expectations described in this package insert.

- Positive, negative and cut-off controls should be assayed in duplicate (and run on every plate, each time an assay is performed). Unknown serum samples may be tested in singlicate. Up to ninety test specimens can be tested in singlicate with an entire plate. Immediately place any unused ELISA plate wells back into the original foil packaging with the provided desiccant, properly seal and store at 2-8°C.
- 2. Dilute each control and each test specimen 1:100 by adding 4 μ L of sample to 396 μ L of Sample Dilution Buffer for SCoV-2. Dilute samples into a dedicated sample dilution block or an appropriately sized tube.
- Add 50 µL of the 1:100 diluted controls and test specimens onto the appropriate locations in the SCoV-2 Antigen Coated Microtiter Strip plate (ELISA plate). Note and record the locations of all controls and test samples in the ELISA plate wells.
- 4. Cover the top of the plate with parafilm (or a plastic plate cover) and remove any excess parafilm from the edges of the plate.

Note: This is to make sure the temperature distribution is evenly spread out in all wells from bottom and sides; any extra parafilm can be cut off once the top is sealed to block evaporation.

CORRECT METHOD

Note: Do not stack plates on top of each other. They should be spread out as a Single layer. This is very important for even temperature distribution. Do not use CO_2 or other gases. Do not place plates in contact with any wet substances such as wet paper towels etc.

- 5. Cover the plate with parafilm or a plastic plate cover and incubate the plate(s) at 37°C for 1 hour in an incubator.
- 6. After the incubation, wash the plate 6 times with an automatic plate washer using 1X Wash Buffer. Use 300 μL per well in each wash cycle.
- Prepare the Conjugate Solution (90 μL of 100X Conjugate: 9 mL of Conjugate Diluent) and add 50 μL per well of this Conjugate Solution into all wells using a multi-channel pipettor. Discard the remaining Conjugate Solution.
- 8. Cover the plate with parafilm or a plastic plate cover and incubate the plate(s) at 37°C for 30 minutes in an incubator.
- 9. After the incubation, wash the plate 6 times with the automatic plate washer using 1X Wash Buffer.
- 10. Add 75 μL per well of Liquid TMB substrate into all wells using a multi-channel pipettor.
- 11. Incubate the plate, uncovered at room temperature in the dark, for 20 minutes.
- 12. Add 50 μ L per well of Stop Solution into all appropriate wells using a multi-channel pipetter. Make sure to add the Stop Solution in the same order and at approximately the same speed at which the TMB was applied. (Note: As the TMB substrate produces an enzymatic reaction with the HRP-conjugate, it is critical this incubation time point is followed as closely as possible). Let the plate stand, uncovered at room temperature, for 1 minute.
- 13. Read the optical density at 450 nm (OD450) with a microplate reader. DO NOT SUBTRACT OR NORMALIZE ANY BLANK VALUES OR WELLS.
- 14. Record the raw OD450 and evaluate the sample status as indicated in the Quality Control and Interpretations of Results sections.

QUALITY CONTROL

Each kit contains positive, negative and cut-off controls. The negative and positive controls are intended to monitor for substantial reagent failure. The positive control will not ensure precision at the assay cut-off. The test is invalid and must be repeated if the control samples do not meet the specifications. If the test is invalid, the results cannot be used. Quality control (QC) requirements must be performed in conformance with local, state, and/or federal regulations or accreditation requirements and your laboratory's standard Quality Control procedures. It is recommended that the user refer to CLSI C24 and 42 CFR 493.1256 for guidance on appropriate QC practices. The results below are given strictly for guidance purposes only and applicable for spectrophotometric readings only.

First, calculate the mean (average) negative, positive and cut-off control raw OD450 values as shown in the following examples.

Example 1: SCoV-2 Negative Control

	OD450
Replicate 1	0.127
Replicate 2	0.148
Sum	0.275

Average Negative Control = 0.275 ÷ 2 = 0.1375

Diagnostic Automation/Cortez Diagnostics, Inc. 21250 Califa St, Suite 102 and 116, Woodland Hills, CA 91367 USA Phone: 818-591-3030, Fax: 818-591-8383

Email: onestep@rapidtest.com Website: www.rapidtest.com

OD450		
Replicate 1	1.675	
Replicate 2	1.824	
Sum	3.499	

Average Positive Control = 3.499 ÷ 2 = 1.7495

Example 3: SCoV-2 Cut-Off Control

Replicate 1	0.672
Replicate 2	0.612
Sum	1.284

Average Cut-Off Control = 1.284 ÷ 2 = 0.642

Finally, verify that the quality control requirements, listed in the table below, are fulfilled

Quality Control Requirements

Control Requirement	
Positive Control	OD ≥ 0.85
Negative Control	OD < 0.25
Cut-Off Control	0.25 < OD < 0.85

Summary: The results on the table above must be obtained for the assay to be considered valid. Non-fulfillment of these criteria is an indication of deterioration of reagents or an error in the test procedure and the assay must be repeated.

RESULTS

The assay cut-off value was determined by screening a large number (>100) of normal human serum (NHS) samples that were collected prior to the COVID-19 outbreak (~November, 2019). The cut-off selection was performed by estimating the mean of the negative specimens plus three (3) standard deviations.

The status of the unknown sample is determined by first calculating the cutoff of the assay (shown above in Example 3), followed by calculating the ratio of the optical density (OD450) divided by the cut-off.

Calculate Immune Status Ratio (ISR): The immune status ratio (ISR) is calculated from the ratio of the optical density (OD) obtained with the test sample divided by the calculated Cut-Off Value. Calculate the ISR for each test sample. If unknown samples were tested in duplicate, then calculate the average optical density (OD450) before dividing by cut-off to determine ISR.

Example 4: Calculate the ISR for a Sample

Sample ID	Raw OD450
Unknown Sample #1	1.321

ISR Value = Raw OD ÷ Cut-Off Value ISR Value = 1.321 ÷ 0.642 = 2.058

ISR Value	Results	Interpretation
0.9 - 1.1	Retest	If tested in singlicate, those sera with OD values close to the cut-off (0.9 < ISR < 1.1) should be repeated in duplicate along with controls to verify the sample status. If the average ISR value from the repeat duplicate testing is ≥ 1, the sample should be considered positive for IgG antibodies to SCoV-2. If the average ISR value from the duplicate testing is < 1, the sample should be considered negative for IgG antibodies targeting SCoV-2.
≥ 1.1	Positive	Presence of detectable IgG antibodies targeting SCoV-2 antigen. Refer to the latest CDC guidelines for diagnosis of this specimen.
< 0.9	Negative	No detectable IgG antibodies targeting SCoV-2 antigen were found. The result does not rule out the possibility of prior SARS-CoV-2 infection. Refer to the latest CDC guidelines for diagnosis of this specimen.

PERFORMANCE CHARACTERISTICS

Clinical Sensitivity

The sensitivity of the Accudiag[™]SCoV-2 IgG ELISA was estimated by testing a panel of serum specimens collected from 39 individuals who tested positive by SCoV-2 PCR assay at an earlier time point. Of the 45 specimens provided by the 39 subjects, 44 specimens tested reactive (positive) with the Accudiag[™]SCoV-2 IgG ELISA.

Days since first symptom	Number of samples Tested	Number reactive	% Agreement (95% CI)
14-21	8	7	87.50% (52.91% - 97.76%)
22-30	5	5	100% (56.55% - 100%
31-64	9	9	100% (70.09%-100%)
Unknown	12	12	100% (75.75% - 100%)

Days after PCR confirmation or Diagnosis	Number of samples Tested	Number reactive	% Agreement (95% CI)
0-7	5	5	100% (56.55% - 100%)
8-14	3	3	100% (43.85% - 100%
15-21	1	1	100% (20.65%-100%)
22-28	2	2	100% (34.24% - 100%)

Diagnostic Automation/Cortez Diagnostics, Inc.

21250 Califa St, Suite 102 and 116, Woodland Hills, CA 91367 USA Phone: 818-591-3030, Fax: 818-591-8383

Email: <u>onestep@rapidtest.com</u> Website: <u>www.rapidtest.com</u>

((

Summary of results in relation to days post onset of symptoms and PCR confirmation

Days post symptom onset	# PCR Positive at any time	#Positive results	Number rea % Agreem (95% Cl PPA	ent
0-7	5	0	N/A	N/A
8-14	3	1	100%	(20.65%-100%)
15-21	1	21	95.45%	(78.20%-99.19%)
22-28	2	22	100%	(85.13%-100%)

Positive Percent Agreement	97.78% (44/45)
(PPA)	95% Confidence Interval*: 88.43% -
	99.61%

Overall Positive agreement for the Accudiag[™] SCoV-2 IgG ELISA *95% confidence interval calculated by Wilson method.

Negative Agreement

The negative percent agreement (NPA) of the AccudiagTM SCoV-2 lgG ELISA was estimated by testing a panel of 95 normal human serum specimens. 94 of the 95 specimens tested non-reactive (negative) with the AccudiagTM SCoV-2 lgG ELISA.

Negative Percent Agreement	98.95% (94/95)
(NPA)	95% Confidence Interval*: 94.28%
	- 99.81%

*95% confidence interval calculated by Wilson method.

Cross-Reactivity (Analytical Specificity)

Cross-reactivity of the Accudiag[™] SCoV-2 IgG ELISA Kit was evaluated by testing SARS-CoV-2 seronegative specimens from patients with antibodies to other viral infections and autoantibodies which could potentially cause false positive results. One hundred eighty normal human serum (NHS) samples that were collected in the US prior to the COVID-19 outbreak (i.e. known negatives) were also tested. Accudiag[™] SCoV-2 IgG ELISA demonstrates no cross-reactivity against IgG antibodies for influenza A, influenza B, hepatitis B, hepatitis C, human immunodeficiency, respiratory syncytial viruses or anti-nuclear antibodies or human anti-mouse antibody. Limited cross-reactivity was also observed with RF samples but did not correlate to RF levels. 180 of 180 NHS tested negative, for an observed specificity of 100%.

Category	Number of samples tested	Number reactive
Anti-Influenza A/B	7	0
Anti-Hepatitis B	5	0
Anti-Hepatitis C	5	0
Anti-Nuclear Antibody	5	0
Rheumatoid Factor	18	0
Human Ant mouse Antibody	3	0
Anti HIV	8	0
Anti-Respiratory Syncytial virus	4	0
Normal Human Sera	180	0

Reproducibility

Reproducibility of the Accudiag[™]SCoV-2 IgG ELISA was evaluated by having three operators test the Accudiag[™]SCoV-2 IgG ELISA Kit on three different days (total of nine runs). All runs were performed by trained personnel at Diagnostic Automation Inc. as per the kit's instructions for use and the same kit lot was used in all runs. Each run included kit controls (positive, negative,

and cut-off) and a seven-member serum panel comprised of positive, negative, and borderline samples. All kit controls and each panel member were tested in triplicate.

Each sample was tested a total of 27 times. Percent agreement with expected values is shown below.

	Positive	Negative	% Agreement with expected result [95% confidence interval]*
Panel 1 (negative)	о	27	100% [87.54-100%]
Panel 2 (moderate positive)	27	о	100% [87.54-100%]
Panel 3 (negative)	0	27	100% [87.54-100%]
Panel 4 (negative)	0	27	100% [87.54-100%]
Panel 5 (low positive)	27	0	100% [87.54-100%]
Panel 6 (moderate positive)	27	0	100% [87.54-100%]
Panel 7 (negative)	0	27	100% [87.54-100%]

*95% confidence interval calculated by Wilson method.

Within-run, between-run, between-operator, and overall variability of immune status ratios (ISRs) are summarized below. Because average values tended to be lower for the negative samples, the %CV tended to be higher, but % agreement with expected result remained high.

Sample Descripti on e Value			Within-Run (Repeatabilit Between-Run y) SD %CV SD %CV			Between- Operator SD %CV		Overall Reproducibility (Within- Laboratory) SD %CV		
Panel 1	0.469	27	0.022	4.7%	0.047	9.9%	0.230	49.0%	0.235	50.2%
Panel 2	4.834	27	0.142	2.9%	0.246	5.1%	0.540	11.2%	0.610	12.6%
Panel 3	0.503	27	0.031	6.2%	0.032	6.3%	0.217	43.1%	0.221	44.0%
Panel 4	0.559	27	0.033	5.9%	0.039	7.1%	0.202	36.1%	0.208	37.2%
Panel 5	1.424	27	0.084	5.9%	0.163	11.4%	0.201	14.1%	0.272	19.1%
Panel 6	3.365	27	0.168	5.0%	0.301	8.9%	0.401	11.9%	0.529	15.7%
Panel 7	0.532	27	0.060	11.3%	0.045	8.5%	0.228	42.9%	0.240	45.1%

Interference

Potential interferents in human serum were tested at or above physiologically relevant levels to determine whether they could cause false positives or false negatives on Accudiag[™] SCoV-2 lgG ELISA Kit. Samples at different anti-SARS-CoV-2 lgG antibody concentrations were spiked with potential interfering substances, then tested in duplicates. No interference was observed for concentrations up to 10 mg/ml hemoglobi,no.4 mg/ml bilirubin (conjugated or unconjugated), 15 mg/ml triglycerides, and 4 mg/ml cholesterol.

Blood-derived potential interferents, their normal concentrations in human blood and serum, and the concentrations tested in this study are shown below.

Interferinq Substance	Normal concentration	Test concentration	Solvent	

Diagnostic Automation/Cortez Diagnostics, Inc.

	Hemoglobin	<0.01-0.05 mg/ml for serum, 110-180 mq/ml for whole blood	10 mg/ml	Sample Dilution Buffer (SOB)	
	Bilirubin (conjugated and unconjuqated)	0.002 - 0.01 mg/ml normal, >0.025 mq/ml jaundiced	0.4 mg/ml	o.1N NaOH	
	Triglycerides	Triglycerides <1.30-2.00 mg/ml		Sample Dilution Buffer (SOB)	
Cholesterol		1.70-1.90 mg/ml normal, 2.80-3.20 mq/ml elevated	4 mg/ml	lsopropyl alcohol (IPA)	

LIMITATIONS OF THE ASSAY

- The assay performance characteristics have not been established for visual result determination.
- The assay performance characteristics have not been established for matrices other than serum.
- A positive result may not indicate previous SARS-CoV-2 infection. Consider other information, including clinical history and local disease prevalence, in assessing the need for a second but different serology test to confirm an immune response.
- False positive results due to cross-reactivity with antibodies to other coronaviruses can occur.
- Assay performance characteristics have not been established for testing cord blood, for testing neonates, for prenatal screening, or for general population screening.
- Samples containing high levels of triglycerides or samples that are hemolyzed should be avoided for analysis with this assay.
- Results from immunosuppressed patients must be interpreted with caution. Assay results should be interpreted only in the context of other laboratory findings and the total clinical status of the patient.

PRECAUTIONS

- For in vitro diagnostic use only. A thorough understanding of this package insert is necessary for the successful use of the product. Reliable results will only be obtained by using precise laboratory techniques and accurately following the package insert.
- Laboratories within the United States and its territories are required to report all positive results to the appropriate public health authorities.
- Follow standard precautions. All patient specimens and positive controls should be considered potentially infectious and handled in accordance with good laboratory procedure.

Safety precautions

- All human source materials used in the preparation of the negative control have tested negative for antibodies to HIV 1&2, Hepatitis C and Hepatitis B surface antigen. However, no test method can ensure 100% efficiency. Therefore, all human controls and antigen should be handled as potentially infectious material. The Centers for Disease Control and Prevention and the National Institutes of Health recommend that potentially infectious agents be handled at the Biosafety Level 2.
- Dispose of hazardous or biologically contaminated materials according to the practices of your institution. Discard all materials in a safe and

acceptable manner and in compliance with prevailing regulatory requirements.

- Wear protective clothing, eye protection and disposable gloves while performing the assay. Wash hands thoroughly afterwards.
- Do not eat, drink, smoke, or apply cosmetics in the laboratory where immunodiagnostic materials are being handled.
- Do not pipette by mouth.

Technical precautions

- This test must be performed on human serum only. The use of whole blood, plasma or other specimen matrices has not been validated.
- Do not mix various lots of any kit component within an individual assay.
- All reagents must be equilibrated to room temperature (15-25°C) before commencing the assay. The assay will be affected by temperature changes.
- Avoid repeated freezing and thawing of the serum specimens to be evaluated.
- Dispense reagents directly from bottles using clean pipette tips. Transferring reagents may result in contamination.
- Unused microtiter wells must be resealed immediately in the zip lock foil pouch with the desiccant provided. Failure to do so may cause erroneous results with those unused microwells.
- Do not use any component beyond the expiration date shown on its label.
- Avoid exposure of the reagents to excessive heat or direct sunlight during storage and incubation.
- Some reagents may form a slight precipitate, mix gently before use.
- Incomplete washing will adversely affect the outcome and assay performance.
- To minimize potential assay drift due to variation in the substrate incubation time, care should be taken to add the stop solution into the wells in the same order and speed used to add the TMB solution.
- Avoid microbial contamination of reagents.
- Avoid contamination of the TMB Substrate Solution with the Conjugate Solution. The TMB Substrate Solution should be clear in color; a blue color change prior to use may indicate contamination has occurred.
- Use a clean disposable pipette tip for each reagent, standard, control or specimen.
- Cover working area with disposable absorbent paper.

Potential biohazardous material

This kit contains reagents made with human serum or plasma. The serum or plasma used has been heat- inactivated unless otherwise stated. Handle all sera and kits used as if they contain infectious agents. Observe established precautions against microbiological hazards while performing all procedures and follow the standard procedures for proper disposal of specimens.

Chemical hazard

Safety Data Sheets (SDSs) are available for all components of this kit. Review all appropriate SDSs before performing this assay. Avoid all contact between hands and eyes or mucous membranes during testing. If contact does occur, consult the applicable SDS for appropriate treatment.

REFERENCES

- 1. Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. https://doi.org/10.1016/J.JPHA.2020.03.001
- Okba, N. M. A., Muller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman, V. M., Lamers, M. M., Sikkema, R. S., de Bruin, E., Chandler, F. D., Yazdanpanah, Y., le Hingrat, Q., Descamps, D., Houhou-Fidouh, N.,

Diagnostic Automation/Cortez Diagnostics, Inc.

Reusken, C. B. E. M., Bosch, B.-J., Drosten, C., Koopmans, M. P. G., & Haagmans, B. L. (2020). SARS-CoV-2 specific antibody responses in COVID-19 patients. MedRxiv, 2020.03.18.20038059. https://doi.org/10.1101/2020.03.18.20038059

- Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
- Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., ... Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

MANUFACTURER AND BRAND DETAILS		
ISO 13485:2016 ISO 13485 Quality Management for Medical Devices CERTIFIED Diagnostic Automation/Cortez Diagnostics, Inc. 21250 Califa Street, Suite 102 and 116, Woodland Hills, California 91367 USA		
Date Adopted	2023-10	
Brand Name	AccuDiag™	
REF 1501-P1	AccuDiag [™] - SCoV-2 IgG ELISA	
EC REP CEpartner4U, Esdoornlaan 13, 3951 DB Maarn, The Netherlands www.cepartner4u.eu		
Revision Date: 2020-09-16		